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This article presents a method for determining the number and characteristics of
milestones to be achieved during a development project in order that effective monitors
of progress can be provided. Projections of progress data lead to estimates of the
completion with determinable accuracy, but accuracy imposes a requirement that the
number of milestones be inversely proportional to the estimate-error variance, and that
the milestones themselves be defined in such a way that each represents approximately

the same level of effort to complete.

l. Introduction

The progress in development of a piece of computer
software (a program and its documentation) is. in many ways,
like the classical random-walk problems associated with birth
and death processes (Ref. I). It a project has identitied a

number of milestones M to be achieved during the course of

development, then the number of milestones achieved by a
certain date can be modeled by a birth process in which the
population never exceeds M. During acceptance testing of a
“completed” program. anomalies are discovered in a similar
birth process. whose population never exceeds some number
A, the total number of anomalies in the program. As anomalies
are repaired. the joint process describing anomalies found
versus anomalies repaired is a birth-death process whose
limiting condition is (hopelully) zero unrepaired anomalies.

During the course ot development, project management
requires eftective monitors on which the health of the project
can be assessed and corrective action initiated, should that
assessment so indicate. Such monitors as cumulative mile-
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stones and anomaly status have been used with success in the
past, not only in software developments, but probably in
almost all endeavors involving development activity.

This article explores the behavior of milestone-completion
processes. and a later article will discuss anomaly discovery/
repair processes. Both will be simplified for the sake of
analysis, in that they will assume that uniform Markovian
statistics apply. That is. the factors which influence the
processes are not time-origin-dependent, and future statistics
depend only on the current completion status of the process;
i.e.. at a given status, the remaining behavior of the process
does not depend on any of the past history up to that status
point. Should statistics change (by management decisions, for
example), the remaining process to completion can be ana-
lyzed using only the new statistical parameters.

Uniformity of statistics depends on inertia over a project
lifetime; it discounts such things as improvement of progress
by learning and degradation of progress by attrition, as factors



that average out. The assumption of uniformity is one that
permits statements to be made with predefined precision in
the form, “If' the team keeps progressing as it has so far,

>

then...”.

These monitors allow projections of completion dates to be
made rather handily and accurately with only a minimum
number of assumptions necessary on the underlying causal
relationships within the development process. This is due, in a
large development, to the multitude of factors which combine
to make the progress appear stochastic in the first place. By
the central limit theorem (Ref. 1, pp. 228—233), each such
process appears normally distributed.

These are not necessarily optimistic assumptions to be
making about processes involving expenditures of large
amounts of money and other resources. Reviewing the
progress via such monitors on a regular basis will reveal
departures from theory rather dramatically, and thereby
permit the management function to act appropriately. In fact,
it is this feedback and corrective action on the part of
management that tends to align the model with reality.

For example, should the series appear to exhibit some early
adverse nonunitform statistics, management can take corrective
action to bring the progress back into uniformity, so as to fall
within the negotiated limits for the projected completion.
Should the series appear to be favorably nonuniform, then
management can again restore the uniformity by removal of
resources, if appropriate to do so.

The point is that monitors based on theoretical models
are quantitative tools that can be applied effectively in
addition to the qualitative judgements normally necessary
for management.

Models permit management in planning to make certain
assumptions concerning the productivity of a team, thereby
arriving at a preliminary schedule. During early development,
the assumptions can be calibrated by actual measurements,
and more realistic schedules drawn up. Management can thus
preplan activities with known precision and can either utilize
leverage as needed to maintain the plan, or renegotiate plans
and capabilities.

As a final point in this introductory material, the theoret-
ical model aids in defining the types of milestones to be
monitored, and their number. Since events to be monitored
are presumed by the theory to have certain statistical
properties, then the accuracy of the results will be influenced

by the accuracy with which the actual events conform to these
assumed statistics. The assumptions concerning the statistics
are simple: normally distributed events, with uniform, history-
independent time behavior. The law of large numbers helps
keep the normality assumption approximately true, and
project inertia and feedback tend to keep the process uniform.
The proper definition of events for history-independence then
remains as the principal challenge to the event definition
process.

Il. Schedule Prediction Model

For schedule prediction, let us assume that it is known a
priori that the project will be completed after M milestones
have been achieved. These milestones correspond to all the
various tasks which have to be accomplished, and once
accomplished, are finished forever (that is, some later activity
does not reopen an already completed task; if such is the case.
however, it can be accommodated by making M larger, to
include all such milestones as separate events). The number M,
of course, may not be known precisely a priori, but may be
estimated via a preliminary design phase. Any uncertainty in
the value of M will translate to an uncertainty in the estimated
completion date, and we will treat this possibility a little Jater.

Let us now further suppose that at regular AT intervals
(e.g., weekly, biweekly, or monthly) the numbers of mile-
stones & reported as being achieved follows a time-independent
statistical distribution function of the binomial form (Ref. I,
pp. 136—142);

PRy =b (ki p)2(}) P (1= py (1

The reported number & of milestones achieved each AT period
is then a random variable whose mean value 7 and variance ¢°
are given by well-known formulas (Ref. 1, pp. 209, 214):

m = pn

a“=np(l-p)y=my (2)

A .
where we use ¢ = | - p hereafter.

We use the binomial distribution function (1) above tor two
reasons: First, for very nominal values of m and 02, the
binomial distribution well approximates the normal distribu-
tion function (Ref. 1, pp. 168—173):
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P(k)~ exp k- m>2} (3)

o (2m)'? { 20°

thus fulfilling the intuitive requirement previously mentioned.
The second reason is that the distribution (1) describes the
probability of achieving exactly k out of n equally likely goals
in which the figure p is associated with the success of each
event.

Thus, if a set of M milestones can be defined for a project, a
maximum of # to be achieved each AT reporting period, if
each milestone represents the accomplishment of a task with
approximately the same degree of difficuity, and if milestones
scheduled in one AT period, but missed, can be rescheduled
for future AT periods without altering the statistics, then the
P(k) form supposed above is a faithful description of the
progress achievement process in the project.

The binomial distribution lends itself easily to solution and
to interpretations. It is exactly the same formula which
governs the statistics of obtaining & heads out of n coin tosses,
using a coin that turns up heads with probability p each toss
(the average number of heads being thus m =np). All the
theoretical results known for coin tossings thus apply to our
scheduling model, suitably interpreted. The “fine structure™ of
a productivity model for achieving milestones is thus simulated
by corresponding a “‘toss” with a “trial for achieving a
milestone.” each with probability p which can in tumn be
related back to the m and ¢? of the normal distribution. Each
trial or step will require an average time

_AT_AT (m-0%)

n m?

At 4)

lll. Progress Averages

The correspondence to coin tosses permits us to state a
number of known results immediately: First, the time 7' to
reach the kth milestone has average value

T, =k/p steps
= kAt/p = kAT/pn units of time (%)

and a variance about this value of

var (T,) = Ti q/k (6)
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We may also compute the average cumulative progress 7_in
milestones achieved after any particular number of steps s as
the expression

M-1 =M
To= X kb(kisp)tMp 2 b (M- M- 1+1,p)
k=0 +=0

(7

The first terms above represent the progress value k weighted
by the probability that progress is at the kth milestone after s
steps; the final terms represent the progress value M (comple-
tion) weighted by the probability that the M milestones were
accomplished on or before step s (being the sum of the
probabilities that M milestones were first reached on the
(M + tthstep, fort=0,...,s~Mand s = M).

A closed-form formula for m  is not known in the case
s > M. but the sum may be readily approximated using the
normal approximation (3) and integrating, rather than sum-
ming, to yield

=P fors<M

- _ 12
~ %7 erfc s_p;(j\%) - (%C%S) exp [- (M- sp)?/2pgs]
(2pqs) -

+M 1—(1/2)erfc[ s”f(M:l for s >M > 10

(2q (M- 1)
)

At s = M/p (the average time to project completion) the
average progress is approximately

Tarp M- (%) " :M[l ) (2ZM>I/2:| ©)

From (9) we may note that for M 2 16, the average progress
(taken over many projects) will show only at least 90%
completion, even though the average project will have com-
pleted by this time!

The variance on M is

var () = g7 _fors<M

(10)

The expression for this variance when s>M is too com-
plicated to be enlightening.



IV. Scheduling With Accuracy When
p Is Known

The ability to project schedules with accuracy based on the
foregoing milestone-achievement model requires only two
constants, m and p, and the definition of M milestones, which
may be achieved in increments having the same likelihood
distributions proposed in (1) or (3). No assumptions have been
made relative to the precedence of milestones, or how
individual milestones are placed on the schedule. It is only the
cumulative number which enters the picture so far. Figure 1
shows what the typical achievement chart should look like.

If we suppose that p and m are known exactly, a priori,
then from Egs. (5) and (6), the relative accuracy with which
this model predicts project completion time (as a one-sigma
event) is € = (g/M)'/2. Thus, to predict a completion time T,
within a factor € requires

M>q/e* = 0 /me’ (1

Recall that it was earlier mentioned that the assumed
milestone achievement distribution is the same as if a
maximum of s milestones were scheduled to be completed
during each AT period, but only some lesser number K with
average value m = np will actually be achieved as scheduled.
Milestones scheduled but unachieved in one AT period are
then “slipped,” the schedule reorganized with n milestones
again scheduled for accomplishment in the next AT period,
and so on, until completion. This type of schedule will be
referred to as “maximum performance” schedule. The param-
eter p is the probability that a given milestone will be achieved
in AT, and ¢ is the probability that it will slip, to be
rescheduled in some future period.

The original (unslipped) maximum-performance schedule
shows the completion date after only M steps of length
Ar=AT/n. However, slippages lengthen this to fM on the
average and to T, [1 + (g/M)"/?] as a 1 standard deviation”
event. In order that an original schedule based on maximum
performance be correct within a relative precision factor €, it is
necessary that

1-p _ q
[(T+e)p- 117 [e-(1+e)q?

M=

q < %—E <e (12)

That is, the slip probability ¢ must be no larger than about €,
and there must be enough milestones so as to make predictions
fall withir the desired precision. These relationships are shown
in Fig. 2.

V. Estimation of the pn Parameter

It is seldom the case that m and o> (or n and p) are known
before a project begins, although the process of generating an
initial schedule makes an implicit estimation ot these param-
eters as a matter of course. More accurate values may be
estimated once the project has begun by tabulating the
progress in cumulative milestones achieved, as depicted in
Fig. 3. If we let k, for i=1....,r be the individual accom-
plishments for each of the AT reporting periods up to the rth,
then the best-fit line (least-square-error) to the cumulative
progress up to that time is

>

?r\r pnr+b (13)

in which the parameters p and r are to be computed from
observed data by

6

’
p:nr(r+ 1) (r+ 2)],:1 (el Ik

1 4 . :
b:(—rjﬁ*(’jfz)jzzl P+ 1-r+2- 3k (14)

These parameters have mean values given by

L@ =p

E(b)=0 (15

~ . . . . . .

so that T isan unbiased estimator ot the mean time to achieve

a given milestone progress. The mean and estimated-mean time
= 2

to completion, 7, and T, then satisty

M=pT,, = gfwf+b (10)

which provides the approximate estimation-error value

- ~ ~

T.,.-T, ~_ T, 5 :
T P ‘
M M
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within first-order effects. The average estimation error is zero
(within first-order effects). The variance computation for € is
straightforward, though somewhat lengthy, leading to bounds
that are independent of M:

4 (r) <var (é) < F_(n (18)

pnr mm nr = max

Both F;, and F_ . are only slightly more than unity; these
bounds and the ratio F; /F, .. are shown in Fig. 4.

The estimated completion date cannot be estimated with
very high accuracy early in the project (when 7 is small) unless
pn=m, the average number of milestones achieved per AT
period, is large, or unless g is very small. The denominator
value, pnr, is the expected number of accomplished milestones
up to and including the rth reporting period. The accuracy in
estimating the time to accomplish the kth milestone, given by
(6), is thus about the same as the accuracy for drawing the
best-fit line through the observed data (within the factor F).

VI. Scheduling With Accuracy Using
Estimates of p

The uncertainty with which the completion date can be
predicted at the rth report springs from two sources: variance
in the value of 7 to be used to estimate p and variance in the
completion date due to p being other than unity:

var (T,,)= T2 (a/M) (R/r) [F () + r/R]

m

<2.2(T q/M) (Rfr) (19)

where R 2 M/m. the average number of reporting periods to
completion. When r<<R, the prediction accuracy is, of
course, dominated by the first term of-the two: at any report

. the completion date variance is bounded according to the
1elatxon given above.

If it is therefore required, as before, to estimate the
completion date to within an error factor e, by a given report
period 7. then the total number of milestones M must satisty

M>(q/e®) (Rr,) [F (r,) + r,/R] (20)
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For good measure, we should probably have used the upper
bound in (19), or M > 2.2(q/e*) (R/ry) to set the number of
milestones. The value of ¢ to be used in (19) and (20) is a
guess, and therefore should be more pessimistic (larger) than
actual. In case no knowledge of ¢ is to be had, we can always
require M > (2.2/€%) (R/r,) total milestones.

The refinement to the considerations given previously
concerning estimating the deviation from an original
maximum-performance schedule to within a factor of ¢ takes
the same form as (12), except that M must be increased by a
factor [F'(r,) *+r,/R] (R/r,):

>q (R/ry) [F(ry) +r,/R]
[e-(1+e)q]?

q<

(2n

1+e

Figure 3 thus illustrates the constraints on M and e when M is
properly scaled.

Note that q is really needed only to judge how many
milestones will be needed at the outset. A best-fit line to
cumulative slip-statistics, using a proper reinterpretation of
(14) will yield a gn, if desired; together with pn, all three
parameters, p, g, and n (actually ) can be found.

VII. Effect of Uncertainties in M

Up to this point, we have assumed M was known and fixed:
in actuality, only an estimate of the total number of
milestones may be known, perhaps by way of a preliminary, or
architectural, design phase. The translation of a AM to a ATy,
along the pT mean-time-to- completlon of-k-milestones lme
coupled with estimation uncertainty in  and random fluctua-
tions in the progress, leads to a first-order-effect approximate
value for the total relative error in the time to completion,
estimated at the rth report:

var (T),/T,,) ~ (AM/M )* + (q/M) (R/P) [F () + r/R]

(22

In (22), AM is the standard deviation of M, and M is the mean
value of M. Because (AM/M) appears squared in this expression
its effect may not be felt so directly as the other terms con-
tributing to schedule variance.



VIll. Conclusion

The progress of a development team is characterized by
milestones achieved; whenever milestones can be defined in
such a way that the expected number and variance of
accomplishments is the same each for each status report, then
the model explored in this article applies.

The main conclusion of this article is that schedule
prediction accuracy is attainable only when a sufficient
number of milestones to be achieved have been defined. The
number of milestones needed is at least inversely proportional

to the desired estimation error variance, and even more drastic
than this if conformance to a maximum-performance schedule
is attempted. It is therefore both necessary and important to
refine tasks and to generate a detailed work-breakdown
structure (WBS) rather carefully, if monitoring accuracy is the
aim.

The generation of a schedule from the WBS should then
proceed to allocate a constant number m of milestones for
each reporting interval, s being the believed mean achievabil-
ity during such intervals.
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